The functional role of basic patch, a structural element of Escherichia coli transcript cleavage factors GreA and GreB.
نویسندگان
چکیده
The transcript cleavage factors GreA and GreB of Escherichia coli are involved in the regulation of transcription elongation. The surface charge distribution analysis of their three-dimensional structures revealed that the N-terminal domains of GreA and GreB contain a small and large basic "patch," respectively. To elucidate the functional role of basic patch, mutant Gre proteins were engineered in which the size and charge distribution of basic patch were modified and characterized biochemically. We found that Gre mutants lacking basic patch or carrying basic patch of decreased size bind to RNA polymerase and induce transcript cleavage reaction in minimally backtracked ternary elongation complex (TEC) with the same efficiency as the wild type factors. However, they exhibit substantially lower readthrough and cleavage activities toward extensively backtracked and arrested TECs and display decreased efficiency of photocross-linking to the RNA 3'-terminus. Unlike wild type factors, basic patch-less Gre mutants are unable to complement the thermosensitive phenotype of GreA(-):GreB(-) E. coli strain. The large basic patch is required but not sufficient for the induction of GreB-type cleavage reaction and for the cleavage of arrested TECs. Our results demonstrate that the basic patch residues are not directly involved in the induction of transcript cleavage reaction and suggest that the primary role of basic patch is to anchor the nascent RNA in TEC. These interactions are essential for the readthrough and antiarrest activities of Gre factors and, apparently, for their in vivo functions.
منابع مشابه
Domain organization of Escherichia coli transcript cleavage factors GreA and GreB.
The GreA and GreB proteins of Escherichia coli induce cleavage of the nascent transcript in ternary elongation complexes of RNA polymerase. Gre factors are presumed to have two biologically important and evolutionarily conserved functions: the suppression of elongation arrest and the enhancement of transcription fidelity. A three-dimensional structure of GreB was generated by homology modeling ...
متن کاملIntrinsic transcript cleavage activity of RNA polymerase.
The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and an...
متن کاملA Cre Transcription Fidelity Reporter Identifies GreA as a Major RNA Proofreading Factor in Escherichia coli
We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain h...
متن کاملA pathway branching in transcription initiation in Escherichia coli
In transcription initiation, all RNA polymerase molecules bound to a promoter have been conventionally supposed to proceed into elongation of transcript. However, for Escherichia coli RNA polymerase, evidence has been accumulated for a view that only its fraction can proceed into elongation and the rest is retained at a promoter in non-productive form: a pathway branching in transcription initi...
متن کاملStructure and Function of the Transcription Elongation Factor GreB Bound to Bacterial RNA Polymerase
Bacterial GreA and GreB promote transcription elongation by stimulating an endogenous, endonucleolytic transcript cleavage activity of the RNA polymerase. The structure of Escherichia coli core RNA polymerase bound to GreB was determined by cryo-electron microscopy and image processing of helical crystals to a nominal resolution of 15 A, allowing fitting of high-resolution RNA polymerase and Gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 17 شماره
صفحات -
تاریخ انتشار 2000